• Hurwitz zeta function is prime. Mathematics, 11(5), 1150, 2023 (with M. Dundulis, R. Garunkštis, and E. Karikovas), Full text

  • Approximation of analytic functions by shifts of certain compositions. Mathematics, 9, 2583, 2021 (with D. Šiaučiūnas and M. Tekorė), Full text

  • Zeros of the higher-order derivatives of the functions belonging to the extended Selberg Class. Lith. Math. J., 61:87-95, 2021, Full text

  • The distribution of zeros of the derivative of the unmodified Selberg zeta-function associated to finite volume Riemann surfaces. Colloq. Math., 163(2):171-188, 2021, Abstract

  • Zeros of derivative of Lerch’s zeta-function. Adv. Stud. Pure Math., 84:79-91, 2020 (with R. Garunkštis and R. Tamošiūnas), Abstract

  • On the vertical distribution of the a-points of the Selberg zeta-function attached to a finite volume Riemann surface. Lith. Math. J., 59(2):143-155, 2019 (with R. Garunkštis), Full text

  • On the distribution of the a-values of the Selberg zeta-function associated to finite volume Riemann surfaces. J. Number Theory, 173:64-86, 2017 (with R. Garunkštis), Full text

  • On the Speiser equivalent for the Riemann hypothesis. Eur. J. Math., 1(2):337-350, 2015 (with R. Garunkštis), Full text

  • The a-points of the Selberg zeta-function are distributed uniformly modulo one. Illinois J. Math., 58(1):207-218, 2014 (with R. Garunkštis and J. Steuding), Full text

  • The a-values of the Selberg zeta-function. Lith. Math. J., 52(2):145-154, 2012 (with R. Garunkštis), Full text

  • Russell’s paradox and ways to solve it. Mathematics and Mathematical Modeling, 5:11-18, 2009

  • Applying fuzzy set theory to comparative politics. In T. D. Clark, J. M. Larson, J. N. Mordeson, J. D. Potter, and M. J. Wierman, Applying Fuzzy Mathematics to Comparative Politics, 1-27, Berlin Heidelberg: Springer, 2008 (with T. D. Clark), Abstract

  • The Kantian paradox, Missouri Valley Journal of Social Science, 6(1):1-6, 2002

Publications
Publications